স্কেলার ও ভেক্টর ক্ষেত্র

একাদশ- দ্বাদশ শ্রেণি - পদার্থবিদ্যা - পদার্থবিজ্ঞান – ১ম পত্র | | NCTB BOOK
38
38

স্কেলার ক্ষেত্র (Scalar field )

    কোনো স্থানের কোনো এলাকা বা অঞ্চলের প্রতিটি বিন্দুতে যদি একটি স্কেলার রাশি [ φ(x, y, z) ] বিদ্যমান থাকে, তবে ঐ অঞ্চলকে ঐ রাশির স্কেলার ক্ষেত্র বলে ।

      এখানে  φ(x, y, z) কে বলা হয় একটি স্কেলার ফাংশন এবং φ ঐ অঞ্চলে একটি স্কেলার ক্ষেত্র নির্দেশ করে। যেমন, ঢাকা শহরের প্রতিটি বিন্দুতে একটি তাপমাত্রা আছে। যেকোনো সময়ে এ শহরের যেকোনো বিন্দুতে তাপমাত্রা জানা যাবে। তাপমাত্রা একটি স্কেলার রাশি। তাপমাত্রাকে আমরা একটা স্কেলার ফাংশন এবং ঢাকা শহরকে তাপমাত্রার স্কেলার ক্ষেত্র বিবেচনা করতে পারি। তেমনি কোনো আহিত বস্তুর চারপাশে তড়িৎ বিভব থাকে। যেহেতু তড়িৎ বিভব স্কেলার রাশি,

আমরা বলতে পারি আহিত বস্তুর চারপাশে একটি স্কেলার ক্ষেত্র বিদ্যমান। উদাহরণ :  φ(x, y, z) = 5x2y - 3yz একটি স্কেলার ক্ষেত্র নির্দেশ করে। 

 

ভেক্টর ক্ষেত্র (Vector field )

    কোনো স্থানের কোনো এলাকা বা অঞ্চলের প্রতিটি বিন্দুতে যদি একটি ভেক্টর রাশি <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>V</mi><mo>→</mo></mover></math> (x, y, z) ] বিদ্যমান থাকে, তবে ঐ অঞ্চলকে ঐ রাশির ভেক্টর ক্ষেত্র বলে।

      এখানে <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>V</mi><mo>→</mo></mover></math>(x, y, z) কে বলা হয় একটি ভেক্টর ফাংশন এবং <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>V</mi><mo>→</mo></mover></math> ঐ অঞ্চলে একটি ভেক্টর ক্ষেত্র নির্দেশ করে। যেমন কোনো প্রবহমান তরল পদার্থের ভিতরে প্রতিটি বিন্দুতে তরলের একটি বেগ আছে। যেকোনো সময়ে তরলের যেকোনো বিন্দুতে এর বেগ জানা যায়। বেগ একটি ভেক্টর রাশি। বেগকে আমরা একটি ভেক্টর ফাংশন এবং প্রবহমান তরলকে বেগের ভেক্টর ক্ষেত্র বিবেচনা করতে পারি। তেমনি একটি আহিত বস্তুর চারপাশে তড়িৎ প্রাবল্য থাকে। যেহেতু তড়িৎ প্রাবল্য ভেক্টর রাশি, আমরা বলতে পারি আহিত বস্তুর চারপাশে একটি ভেক্টর ক্ষেত্র বিদ্যমান।

 

ভেক্টর অপারেটর, <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mo>▽</mo><mo>→</mo></mover></math> (Vector operator, <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mo>▽</mo><mo>→</mo></mover></math>)

       ভেক্টর ক্যালকুলাসে বহুল ব্যবহৃত অপারেটরটি হচ্ছে <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mo>▽</mo><mo>→</mo></mover></math> (ডেল)। স্যার হ্যামিলটন এটি আবিষ্কার করেন। আগে এটি নাবলা নামে পরিচিত ছিল । এটি একটি ভেক্টর অপারেটর। <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mo>▽</mo><mo>→</mo></mover></math> হচ্ছে,

<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mo>▽</mo><mo>→</mo></mover></math> = <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>i</mi><mo>^</mo></mover><mfrac><mo>∂</mo><mrow><mo>∂</mo><mi>x</mi></mrow></mfrac><mo>+</mo><mover accent='true'><mi>j</mi><mo>^</mo></mover><mfrac><mo>∂</mo><mrow><mo>∂</mo><mi>y</mi></mrow></mfrac><mo>+</mo><mover accent='true'><mi>k</mi><mo>^</mo></mover><mfrac><mo>∂</mo><mrow><mo>∂</mo><mi>z</mi></mrow></mfrac></math>

       ভেক্টর অপারেটরের সাহায্যে তিনটি রাশি তৈরি করা হয় যেগুলো পদার্থবিজ্ঞানের বিভিন্ন সূত্র ও তত্ত্ব ব্যাখ্যা করতে খুবই প্রয়োজন হয় । এগুলো হচ্ছে গ্রেডিয়েন্ট, ডাইভারজেন্স ও কার্ল।

Content added || updated By
Promotion